Results of Double Stars Observations at RI NAO Telescopes

Daniil Bodryagin, Nadiia Maigurova

Why Stars with High Proper Motions?

These stars are important because :

- These are our neighbors - the nearest star - the first candidates in the lists to determine the stars parallax
- Data source for study population of nearest vicinities of the Sun
- Search for brown dwarfs and extrasolar planets (based on the comparison of IR review DENIS - 2mass-WISE)
- The good candidates for microlensing events

BUT!!!

Poor observation history
Non-availability of the high precision positions
Relative proper motions

possible to observe via small telescopes

The Washington Double Star Catalog

Sixth Catalog of Orbits of Visual Binary Stars As of 11 September 2014, the Sixth Catalog included 2,518 orbits of 2,413 systems

No Proper Motions - Main Component 1.5\%
Second Component 20\%

B/WDS

The Washington Double Star Catalog, Mason+ 2001-2014
maintained by the US Naval
Observatory
http://ad.usno.navy.mil/proj/WDS/
The WDS Catalog contains positions (J2000), discoverer designations, epochs, position angles, separations, magnitudes, spectral types, proper motions, and, when available, Durchmusterung numbers and notes for the components of 133,050 systems based on 914,408 means (as of 1 August 2015). The catalog is updated nightly.

I/274 CCDM

The Catalog of Components of Double and Multiple Stars, Dommanget, J.; Nys, O. (2002) 105,838 components of 49,325 double and multiple stars. The catalog lists positions, magnitudes, spectral types, and proper motions for each component.

I/276 TDSC

The Tycho Double Star Catalogue
Fabricius+ 2002
103259 entries:
Tycho double star solutions;
Tycho-2 stars identifyed in WDS;
Tycho-2 pairs separated by less than 10
arcsec

Compiling the program of observations

Alf - AMC List Formation - software for automatically generate list of night observations

Settings:

Source catalogs (WDS);
Declination zone (-10-+30 $)$;
Magnitude range (8-15 for AMC, 12-17 for Mobitel)
Updating the list is performed based on the weights of the catalogs, results
of previous astrometric processing (number of positions, and its mean
square error (MSE))
Also:
The program for calculation of stars mean positions array for compilation catalog «wxDev»
The program for cross-identification and search systems with invisible companions «peto»

Axial meridian circle RI NAO

Horizontal telescope in the prime vertical
($\mathrm{D}=180 \mathrm{~mm}, \mathrm{~F}=2500 \mathrm{~mm}$), 1995
CCD-camera S1C ($1040 \times 1160,16 \times 16 \mu^{2}$, 1.32"/px, 23'x25'

Drift-scan mode with $\left.102^{s} / \cos (\delta)\right)$
GPS-receiver
(St. Petersburg, Russia)
V-filter in
Bessel-Johnson-Cousins

Mobile multi-channel automatic telescope(2010)

The Maksutov system lens, $D=500 \mathrm{~mm}, F=3000 \mathrm{~mm}$
GPS-reciever
CCD-camera: Alta U9000, $3 \mathrm{k} \times 3 \mathrm{k} \mathrm{pix}^{2}$
Size of pixel 12×12 мкм 2
FOV 42.5' $\times 42.5^{\prime}$
Mode - drift scan
Filter R (on base OC-12)

Statistic of the observations

Period	Instrument	DEC Zone	Total position	Mean N *
2013	AMK	$-10-+30$	2420	4
2014	АМК	$-10-+30$	1848	3.5
2013	Мобител	$-5-+33$	124859	8
2014	Мобител	$-10-+30$	87767	8

The results of search WDS stars

Period	Instrument	Primary/Sec	Mean N *
2013	АМК	$67 / 40$	3.5
2014	АМК	$60 / 14$	3.5
2013	Мобител	$63 / 155$	8
2014	Мобител	$171 / 190$	9

*The average number of observations of a star

Processing and Reductions

Astrometrica

- Align background image;
- Detection of objects for which the signal/noise ratio $\mathrm{S} / \mathrm{N}>=4.0$;
- Getting instrumental coordinates of the detected objects in the system matrix;

Performing astrometric reductions for equatorial coordinates of objects:
Reference catalog UCAC2
Connection model between the tangential and the measured coordinates: AMC - polynomial 2nd order Mobitel - polynomial 4th order

Processing and Reductions

Reduc
Program automatically:

- determines the center of the star (on the basis of max pixel luminosity or S / N rate)
- calculates a position angle, a double star separation and a difference of magnitude estimation
- calculates position angle and separation standard deviation

Processing and Reductions

Program needs to know:

- camera pixel size
- image orientation
- image inclination regarding the celestial equator
- pixel sampling (angular scale)

```
Date : 20140915
Instrument : MBT
Camera : mbtl (pixels : 12 x 12)
Sampling : 0.83
Delta Matrix : -90.15
-=-= 180_MBT_2013_0808_20478+1109 =-=-
theta = 58.3 (sigma:0.15 年 Med:58.35)
deltaM=0.64
Nb :10
```

Theta	Rho	dM	rThe	rRho	Image
58.36	48.766	0.64	0.06	0.141	R2230339K.fit
58.21	48.629	0.64	-0.09	0.005	R2232425K.fit
58.05	48.593	0.58	-0.25	-0.032	R2234516K.fit
58.38	48.592	0.56	0.08	-0.032	R2237006K.fit
58.52	48.6	0.69	0.22	-0.025	R2239086K.fit

Measurements results log-file fragment

Results

A fragment of the table which represents the measured data

star_name	theta	ro	sigma theta	sigma rho	num
$00109+1705$	98.59	13.462	1.13	0.315	4
$00146+2508$	130.74	7.972	0.74	0.152	9
$00152+2454$	200.47	31.272	0.21	0.151	10
...					
$20363+2321$	134.09	21.572	0.34	0.191	9
$20397+1415$	147.08	32.537	0.25	0.127	10
$20397+1406$	285.62	6.459	1.76	0.579	10
$20400+2503$	272.02	20.397	*	*	1
$20401+2509$	288.94	10.36	0.44	0.105	10
$20401+2458$	24.08	16.112	1.14	0.3	9
$20401+2450$	34.51	5.627	1.61	0.224	10

Errata

Average standard deviation:
σ theta $=0.54^{\circ}$ σ rho $=0.163^{\prime \prime}$

The results of cross-identification with USNO A2.0 catalog

Telescope	Primary	Sec	New
Mobitel	$234 / 211$	$345 / 318$	61
AMK	$127 / 119$	$54 / 51$	35

The results of comparison of proper motions with PPMXL catalog

Differences	dPM_RA, $\mathrm{mas} / \mathrm{yr}$	dPM_DE, $\mathrm{mas} / \mathrm{yr}$	N
(WDS - PPMXL)	2 ± 16	-4.0 ± 17	457
(WDS- NAO)	-0 ± 14	0 ± 15	457

Common Proper Motion

Conclusions

- The equatorial coordinates and proper motions of 744 WDS stars component were obtained based on CCD observations during 2013-2014 yr. Average accuracy of the reference star position is 20 and 30 mas in both coordinates for observations obtained at the telescope Mobitel and AMK, respectively.
- Parameters for 170 binary systems (position angles and separations) were obtained. The standard deviation is 0.54° for position angles and $0.163^{\prime \prime}$ for separation.
- The new proper motions for 96 secondary WDS star were calculated using USNO A2.0 as the first epoch (the epoch difference is more than 60 years, so it allows us to obtain proper motions with good accuracy). The accuracy of the proper motions is within 2-15 mas/yr.

Further plans:

- reduce other our observations (including old ones), which can contain WDS objects
- analyze proper motions to check the undeclared double and multiple star systems
- send and attach our results to WDS

THANKS

Some of the results of this work were obtained using services :

VizieR, CDS, Strasbourg, France

http://vizier.u-strasbg.fr/
NASA's Heasarc Tools
http://heasarc.gsfc.nasa.gov/docs/tools.html
Программы TopCat (Tool for OPerations on Catalogues And Tables) http://www.star.bris.ac.uk/~mbt/topcat/

Дякую Thank you！

感謝您的關注！